楊斌 (副教授)


楊斌

男  副教授  計算機軟件與理論系

碩士生導師   九三學社社員

個人簡介

畢業於復旦大學信息科學與工程沐鸣😜,獲得理學博士學位🚵‍♀️🤴;期間曾被評為復旦大學優秀學生和上海市優秀畢業生。目前在沐鸣注册🔸,從事圖像智能解譯、機器學習與人工智能等方面的科研與教學工作。

 主持國家自然科學基金和上海市自然科學基金等科研項目5項🐈‍⬛,在國內外學術期刊和會議中發表論文40余篇,參與編著出版中英文學術專著2部。代表性的研究成果主要收錄於IEEE Transactions on Geoscience and Remote Sensing(TGRS)IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing(JSTARS)JCR 1/JCR 2區國際權威期刊。長期參與IEEE TGRSIEEE JSTARS🩸、Neural Networks等學術期刊審稿工作。教育部學位中心本科和碩士學位論文評審專家🤽‍♀️✍🏿,IEEE Member,中國圖象圖形學學會會員,中國電子學會會員,中國計算機學會會員。

研究方向

高光譜圖像智能解譯

機器學習與人工智能(群智能、多目標優化、深度神經網絡等)

盲源分離反問題的建模與求解

講授課程

離散數學,人工智能🥎,.NET技術,機器學習及應用(屬新材料現代產業沐鸣)

研究生培養

↓↓起點不是終點,勇攀優秀之巔。科研沒有捷徑,唯有堅持不懈🤸🏽‍♀️。↓↓

*已畢業碩士生5人,在讀5人🧑🏽‍🚀;研究生已發表SCI期刊論文7篇👃,獲軟件著作權1

*已指導2名研究生獲國家獎學金🦂,其中1人同時獲得上海市優秀畢業生、2023年度上海市計算機學會優秀碩士學位論文提名獎。

*本科生比賽與獲獎:指導本科生獲批2項國家級大學生創新創業項目⛽️🦶🏼,第二十五屆中國機器人及人工智能大賽上海賽區比賽人工智能創新賽三等獎

*特別支持學生以“第一作者”發表高質量研究成果

##基本要求##:具有良好的數學、英語基礎和編程能力,有科研或數學建模等競賽經歷者將被重點考慮

##核心要求##對科研有濃厚的興趣、具有良好的自主學習能力🧈,自我要求高並持之以恒努力,與導師及課題組保持積極正向溝通的學生

##培養特色##:塑造科學研究的辯證思維,既有理學思維又有工學技術和動手能力🏊🏿‍♀️,能夠獨立探索和解決計算機視覺與圖像智能解譯中的復雜問題✏️,並持續地創新

主持的科研項目:

1.國家自然科學基金青年項目2021. 01–2023.12 (編號🪷🆕:62001098,結題🧑🏽‍✈️,主持

2. 上海市自然科學基金面上項目2023.04–2026.03(編號:23ZR1402400,在研🫡,主持

3.中央高校基本科研業務費專項資金自由探索項目2020.01 – 2022.12 (編號:2232020D-33,結題,主持

4. 復旦大學電磁波信息科學教育部重點實驗室開放基金🚵🏿‍♂️,2024.07–2025.06(編號🎋🫷:EMW202402🪘,在研🤟,主持

5. 上海泰坦科技股份有限公司,化合物產品數據的智能分析與查詢系統開發👲🏿,2020.07–2021.04企業技術開發橫向課題🧚🏿‍♀️,結題,主持

主要研究成果:

代表性期刊論文

1. Minglei Li, Bin Yang*, and Bin Wang, “EMLM-Net: An extended multilinear mixing model-inspired dual-stream network for unsupervised nonlinear hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 62, pp. 1–16, 2024. (中科院SCI一區,IF: 7.5DOI: 10.1109/TGRS.2024.3363427, *通訊作者)

2. Minglei Li, Bin Yang*, and Bin Wang, “A coarse-to-fine scheme for unsupervised nonlinear hyperspectral unmixing based on an extended multilinear mixing model,”IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1–15, 2023. (中科院SCI一區,IF: 7.5👨🏼‍🎤,DOI: 10.1109/TGRS.2023.3308211, *通訊作者)

3. Bin Yang*, “Supervised nonlinear hyperspectral unmixing with automatic shadow compensation using multiswarm particle swarm optimization,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–18, 2022. (中科院SCI一區🌍,IF: 7.5🧾,DOI: 10.1109/TGRS.2022.3177648)

4. Minglei Li, Bin Yang*, and Bin Wang, “Spectral–spatial reweighted robust nonlinear unmixing for hyperspectral images based on an extended multilinear mixing model,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–17, Jul. 2022. (中科院SCI一區,IF: 7.5DOI: 10.1109/TGRS.2022.3223434, *通訊作者)

5. Jiafeng Gu, Bin Yang, and Bin Wang, “Nonlinear unmixing for hyperspectral images via kernel-transformed bilinear mixing models,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–13, 2022. (中科院SCI一區,IF: 7.5DOI: 10.1109/TGRS.2021.3135571)

6. Bin Yang and Bin Wang, “Band-wise nonlinear unmixing for hyperspectral imagery using an extended multilinear mixing model,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 11, pp. 6747–6762, 2018. (中科院SCI一區🧑🏼‍🏫,IF: 7.5DOI: 10.1109/TGRS.2018.2842707)

7. Bin Yang, Bin Wang, and Zongmin Wu, “Nonlinear hyperspectral unmixing based on geometric characteristics of bilinear mixture models,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 694–714, Feb. 2018. (中科院SCI一區,IF: 7.5DOI: 10.1109/TGRS.2017.2753847)

8. Bin Yang, Zhao Chen, and Bin Wang, “Nonlinear endmember identification for hyperspectral imagery via hyperpath-based simplex growing and fuzzy assessment,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 351–366, 2020. (中科院SCI二區(top)IF: 4.7DOI: 10.1109/JSTARS.2019.2962609)

9. Bin Yang, Wenfei Luo, and Bin Wang, “Constrained nonnegative matrix factorization based on particle swarm optimization for hyperspectral unmixing,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 8, pp. 3693–3710, Aug. 2017. (中科院SCI二區(top)🪆,IF: 4.7DOI: 10.1109/JSTARS.2017.2682281)

10. Wenfei Luo, Lianru Gao, Antonio Plaza, Andrea Marinoni, Bin Yang, Liang Zhong, Paolo Gamba, and Bing Zhang, “A new algorithm for bilinear spectral unmixing of hyperspectral images using particle swarm optimization,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 12, pp. 5776–5790, Dec. 2016. (中科院SCI二區(top)IF: 4.7DOI: 10.1109/JSTARS.2016. 2602882)

11. Bin Yang, Bin Wang, and Zongmin Wu, “Unsupervised nonlinear hyperspectral unmixing based on bilinear mixture models via geometric projection and constrained nonnegative matrix factorization,” Remote Sens., vol. 10, no. 5, pp. 801(1–30), May. 2018. (中科院SCI二區🕵️‍♂️🦸🏿,IF: 4.2DOI: 10.3390/rs10050801)

12. Zehao Chen,Bin Yang, and Bin Wang, “A preprocessing method for hyperspectral target detection based on tensor principal component analysis,” Remote Sens., vol. 10, no. 7, pp. 1033(1–21), Jun. 2018. (中科院SCI二區,IF: 4.2DOI: 10.3390/rs10071033)

13. Muhammad Sohail, Zhao Chen, Bin Yang, Guohua Liu, “Multiscale spectral-spatial feature learning for hyperspectral image classification,” Displays, vol. 74, no. June, p. 102278, 2022. (DOI: 10.1016/j.displa.2022.102278)

14.Bin Yang* and Zhangqiang Yin, Spectral variability augmented multi-linear mixing model for hyperspectral nonlinear unmixing. IEEE Geosci. Remote Sens. Lett., 2024. (中科院SCI三區🫲🏼,IF: 4.0💆🐨,DOI: 10.1109/LGRS.2024.3482103)

研究生一作期刊論文

15. Zhenyu Ma and Bin Yang*, Spatial-spectral hypergraph-based unsupervised band selection for hyperspectral remote sensing images.IEEE Sens. J., vol. 24, no. 17, pp. 27870-27882, September. 2024. (中科院SCI二區,IF: 4.3DOI: 10.1109/JSEN.2024.3431241, *通訊作者)

16. Huangying Zhang and Bin Yang*, “Geometrical projection improved multi-objective particle swarm optimization for unsupervised nonlinear hyperspectral unmixing,” Int. J. Remote Sens., vol. 45, no. 6, pp. 1849–1882, Mar. 2024. (中科院SCI三區,IF: 3.4DOI: 10.1080/01431161.2024.2320181, *通訊作者)

17. Zhangqiang Yin and Bin Yang*, “Unsupervised nonlinear hyperspectral unmixing with reduced spectral variability via superpixel-based fisher transformation,” Remote Sens., vol. 15, no. 20, p. 5028, Oct. 2023. (中科院SCI二區🧏‍♀️,IF: 4.2📔,DOI: 10.3390/rs15205028, *通訊作者)

18. Yapeng Miao and Bin Yang*, “Multilevel reweighted sparse hyperspectral unmixing using superpixel segmentation and particle swarm optimization,” IEEE Geosci. Remote Sens. Lett., vol. 19, 2022. (中科院SCI三區,IF: 4.0DOI: 10.1109/LGRS.2022.3203990, *通訊作者)

19. Yapeng Miao and Bin Yang*, “Sparse unmixing for hyperspectral imagery via comprehensive-learning-based particle swarm optimization,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 9727–9742, 2021. (中科院SCI二區(top)IF: 4.7DOI: 10.1109/JSTARS.2021.3115177, *通訊作者)

20. Danni Jin and Bin Yang*, “Graph attention convolutional autoencoder-based unsupervised nonlinear unmixing for hyperspectral images,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 16, pp. 7896–7906, 2023. (中科院SCI二區(top)👃🏼,IF: 4.7DOI: 10.1109/JSTARS.2023.3308037, *通訊作者)

21. Zexing Zhang and Bin Yang*, “Hypergraph regularized deep autoencoder for unsupervised unmixing hyperspectral images,” J. Donghua Univ. (English Ed.), vol. 40, no. 1, pp. 8–17, 2023. (DOI: 10.19884/j.1672-5220.202201002, *通訊作者)

近幾年的論著、專利👱🏼‍♀️:

專著

1.王斌, 楊斌. 高光譜遙感圖像解混理論與方法——從線性到非線性. 北京: 科學出版社, 2019.

國家發明專利

1.楊斌, 王斌. 一種基於雙線性模型的高光譜圖像非線性解混方法, 專利號🩳: CN201611062937.7

2.陳昭,楊斌,鄭雨欣. 基於流形回歸網絡的細胞定位與計數方法及應用🏨,專利號⤵️: 202111059720.1

3. 徐春曉😽,劉國華🤽,楊斌. 一種用於紡織服裝工業互聯網中的訂單分配方法,專利號🧗🏼‍♀️:ZL 202110807678.0

軟件著作權

1. 尹張強,楊斌. 高光譜圖像群智能解混系統V1.0🤌🏽,登記號🏄‍♂️✣:2024SR0846342

聯系方式:

辦公室👦:上海市松江區人民北路2999號沐鸣娱乐1號沐鸣樓108

研究生實驗室⛹🏼‍♂️:圖文信息中心703

郵編👩🏽‍🏫:201620

辦公電話:(86)021-67792382

電子郵箱:yangb19@dhu.edu.cn


Bin Yang

Associate Professor, Master Supervisor, Member of Jiusan Society

Bio:

He graduated from the School of Information Science and Technology of Fudan Universityand received the Ph.D. degree in 2019. During this period, he was awarded as Outstanding Student of Fudan University and Outstanding Graduate of Shanghai. He is an associate professor in the School of Computer Science and Technology of Donghua University, engaged in scientific research and education in image processing, machine learning and artificial intelligence, etc.

He has published more than 40 papers in academic journals and conferences including IEEE Transactions on Geoscience and Remote Sensing (TGRS), IEEE Journal of Selected Topics in Geoscience and Remote Sensing Applied Earth Observations and Remote Sensing (JSTARS). He has been a reviewer for TGRS, JSTARS, Neural Networks, and other academic journals for a long time.

Research Areas:

1. Hyperspectral Image Processing Theories and Methods

2. Pattern Recognition and Machine Learning

3. Computational Intelligence and Artificial Intelligence (e.g., Swarm Intelligence, Multi-Objective Evolutionary Optimization, Deep Neural Networks)

Main Courses Taught:

Discrete Mathematics, Artificial Intelligence, .NET Technology, Machine Learning and Application (Course for College of Modern Industry Advanced Materials)

Publications:

Journal Papers:

1. Minglei Li, Bin Yang*, and Bin Wang, “EMLM-Net: An extended multilinear mixing model-inspired dual-stream network for unsupervised nonlinear hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 62, pp. 1–16, 2024. (DOI: 10.1109/TGRS.2024.3363427, *Corresponding Author)

2. Minglei Li, Bin Yang*, and Bin Wang, “A coarse-to-fine scheme for unsupervised nonlinear hyperspectral unmixing based on an extended multilinear mixing model,”IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1–15, 2023. (DOI: 10.1109/TGRS.2023.3308211, *Corresponding Author)

3. Bin Yang*, “Supervised nonlinear hyperspectral unmixing with automatic shadow compensation using multiswarm particle swarm optimization,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–18, 2022. (DOI: 10.1109/TGRS.2022.3177648)

4. Minglei Li, Bin Yang*, and Bin Wang, “Spectral–spatial reweighted robust nonlinear unmixing for hyperspectral images based on an extended multilinear mixing model,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–17, Jul. 2022. (DOI: 10.1109/TGRS.2022.3223434, *Corresponding Author)

5. Jiafeng Gu, Bin Yang, and Bin Wang, “Nonlinear unmixing for hyperspectral images via kernel-transformed bilinear mixing models,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–13, 2022. (DOI: 10.1109/TGRS.2021.3135571)

6. Bin Yang and Bin Wang, “Band-wise nonlinear unmixing for hyperspectral imagery using an extended multilinear mixing model,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 11, pp. 6747–6762, 2018. (DOI: 10.1109/TGRS.2018.2842707)

7. Bin Yang, Bin Wang, and Zongmin Wu, “Nonlinear hyperspectral unmixing based on geometric characteristics of bilinear mixture models,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 694–714, Feb. 2018. (DOI: 10.1109/TGRS.2017.2753847)

8. Bin Yang, Zhao Chen, and Bin Wang, “Nonlinear endmember identification for hyperspectral imagery via hyperpath-based simplex growing and fuzzy assessment,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 351–366, 2020. (DOI: 10.1109/JSTARS.2019.2962609)

9. Bin Yang, Wenfei Luo, and Bin Wang, “Constrained nonnegative matrix factorization based on particle swarm optimization for hyperspectral unmixing,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 8, pp. 3693–3710, Aug. 2017. (DOI: 10.1109/JSTARS.2017.2682281)

10. Wenfei Luo, Lianru Gao, Antonio Plaza, Andrea Marinoni, Bin Yang, Liang Zhong, Paolo Gamba, and Bing Zhang, “A new algorithm for bilinear spectral unmixing of hyperspectral images using particle swarm optimization,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 12, pp. 5776–5790, Dec. 2016. (DOI: 10.1109/JSTARS.2016. 2602882)

11. Bin Yang, Bin Wang, and Zongmin Wu, “Unsupervised nonlinear hyperspectral unmixing based on bilinear mixture models via geometric projection and constrained nonnegative matrix factorization,” Remote Sens., vol. 10, no. 5, pp. 801(1–30), May. 2018. (DOI: 10.3390/rs10050801)

12. Zehao Chen,Bin Yang, and Bin Wang, “A preprocessing method for hyperspectral target detection based on tensor principal component analysis,” Remote Sens., vol. 10, no. 7, pp. 1033(1–21), Jun. 2018. (DOI: 10.3390/rs10071033)

13. Muhammad Sohail, Zhao Chen, Bin Yang, Guohua Liu, “Multiscale spectral-spatial feature learning for hyperspectral image classification,” Displays, vol. 74, no. June, p. 102278, 2022. (DOI: 10.1016/j.displa.2022.102278)

14.Bin Yang* and Zhangqiang Yin, Spectral variability augmented multi-linear mixing model for hyperspectral nonlinear unmixing. IEEE Geosci. Remote Sens. Lett., 2024. (DOI: 10.1109/LGRS.2024.3482103)

15. Zhenyu Ma and Bin Yang*, Spatial-spectral hypergraph-based unsupervised band selection for hyperspectral remote sensing images.IEEE Sens. J., vol. 24, no. 17, pp. 27870-27882, September. 2024. (DOI: 10.1109/JSEN.2024.3431241, *Corresponding Author)

16. Huangying Zhang, Bin Yang*, “Geometrical projection improved multi-objective particle swarm optimization for unsupervised nonlinear hyperspectral unmixing,” Int. J. Remote Sens., vol. 45, no. 6, pp. 1849–1882, Mar. 2024. (DOI: 10.1080/01431161.2024.2320181, *Corresponding Author)

17. Zhangqiang Yin, Bin Yang*, “Unsupervised nonlinear hyperspectral unmixing with reduced spectral variability via superpixel-based fisher transformation,” Remote Sens., vol. 15, no. 20, p. 5028, Oct. 2023. (中科院SCI二區🧗🏻‍♀️,IF: 4.2🧩,DOI: 10.3390/rs15205028, *Corresponding Author)

18. Yapeng Miao and Bin Yang*, “Multilevel reweighted sparse hyperspectral unmixing using superpixel segmentation and particle swarm optimization,” IEEE Geosci. Remote Sens. Lett., vol. 19, 2022. (中科院SCI三區,IF: 4.0DOI: 10.1109/LGRS.2022.3203990, *Corresponding Author)

19. Yapeng Miao and Bin Yang*, “Sparse unmixing for hyperspectral imagery via comprehensive-learning-based particle swarm optimization,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 9727–9742, 2021. (DOI: 10.1109/JSTARS.2021.3115177, *Corresponding Author)

20. Danni Jin and Bin Yang*, “Graph attention convolutional autoencoder-based unsupervised nonlinear unmixing for hyperspectral images,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 16, pp. 7896–7906, 2023. (DOI: 10.1109/JSTARS.2023.3308037, *Corresponding Author)

21. Zexing Zhang and Bin Yang*, “Hypergraph regularized deep autoencoder for unsupervised unmixing hyperspectral images,” J. Donghua Univ. (English Ed.), vol. 40, no. 1, pp. 8–17, 2023. (DOI: 10.19884/j.1672-5220.202201002, *Corresponding Author)

Academic Monograph:

1. Bin Wang, Bin Yang. Hyperspectral remote sensing image unmixing theories and methods: From linear to nonlinear. Beijing: Science Press, 2019.

Patents:

1.Bin Yang, Bin Wang. A bilinear model based nonlinear unmixing method for hyperspectral images, No. 201611062937.7

2. Zhao Chen, Bin Yang, and Yuxin Zhen. Manifold regression network-based cell location and counting method and its application, No. 202111059720.1

3. Chunxiao Xu, Guohua Liu, Bin Yang, et al. An order distribution method for textile and garment industrial Internet, No. ZL 202110807678.0

Main Research Projects:

1.National Natural Science Foundation of China, 2021.01-2023.12 (No. 62001098)

2.Natural Science Foundation of Shanghai, 2023.04–2026.03 (No23ZR1402400)

3.Fundamental Research Funds for the Central Universities,2020.01-2022.12 (No. 2232020D-33)

Address:

Office: Room 108, Department Building 1 of Donghua University, No. 2999, Renmin North Road, Songjiang District, Shanghai

Lab: Room 703, Library and Information Center of Donghua University

Tel: (86)021-67792382

Mail: yangb19@dhu.edu.cn;  Postcode: 201620


沐鸣注册专业提供🤦🏿‍♂️:沐鸣注册沐鸣沐鸣娱乐等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,沐鸣注册欢迎您。 沐鸣注册官網xml地圖